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Block 20: '

A the fixation point includes the X-axes of both cameras. We derive two expressions that
order all matched points in the images in twoI'distinct depth-consistent fashions from image
coordinates only. One is a tilt-related ordei,. which depends only on the polar angles of
the matched points, the other is a depth-related order y. Using A for tilt estimation and
point separation (in depth) demonstrates some anomalies and unusual characteristics that
have been observed in psychophysical experiments, most notably the "induced size effect".
Furthermore, the same approach can be applied to estimate some qualitative behavior of
the normal to the surface of any object in the field of view. More specifically, one can
follow changes in the curvature of a contour on the surface of an object, with either x- or
y-coordinate fixed. t- .. ih.. ,
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Qualitative Depth and Shape from Stereo Weinshall

SIntroduction

Research in early vision regarding stereo seems to be concerned mainly with the correspon-
dence problem, namely, finding the right matching between points on the left and right
images. Obtaining exact depth values from a stereo pair has been considered a simple exer-
cise, whose solution is well known, though might involve some tedious but straightforward
computations. Thus, it has been implicitly assumed that the final goal of stereo algorithms is
to compute an exact depth map using disparity values. The following observations suggest,
however, that the depth computation from disparity values is not necessarily straightforward
or even feasible, and that more qualitative depth information may be easier to obtain and
more robust.

First, the depth computation problem reduces to a simple trigonometric formula when
the parameters of the cameras, or the eyes, are known. When they are not known, a scheme
to compute the camera's parameters from a number of conjugate points (that is, matched
pairs of points from the different images) has been devised, involving the solution of a set
of nonlinear equations (see for instance Horn, 1986). S-nce the problem has no closed-form
solution, and since the data are not precise, a solution is found using iterative methods that

minimize the sum of the squares of the errors. In practice, however, this approach is very
difficult to implement, since the parameters of the cameras must be obtained from data with
error on the order of magnitude of the disparity values, which are the raw material used for
depth computation (e.g., error due to pixel quantization). In other words, the registration
problem (namely, finding parameters for the camera's calibration) is much more difficult
than just computing depth from disparity values. Less general methods to perform camera
calibration have also been devised, see Prazdny (1981) and Longuet-Higgins (1981).

The other observation originates from biological vision. It seems that human vision does
not necessarily obtain exact depth values from stereo disparity information alone, see, e.g.,
Foley (1977) and Foley & Richards (1972). Rather, stereo disparity seems to be used mainly
in obtaining qualitative depth information about objects in the field of view. Estimation of
the magnitude of this relative depth is possibly dependent on extraretinal estimation of some
physical parameters like the angle of convergence of the eyes. For example, whether looking
at stereograms with crossed or uncrossed eyes affects only the extraretinal perception of
the angle of convergence of the eyes, not the disparity values. It also results in a different
perception of the depth of the central square in a simple random-dot stereogram (where a I
central square in one image has a constant shift with respect to the other). Id

The purpose of this paper is to exploit the geometry of the situation, where a scene is 1

viewed from two different angles, to obtain insight into the above problem. It will be shown
that qualitative relative depth information (order) of various kinds can be obtained from
conjugate points alone easily and reliably, involving almost no computations and indepen-
dent of the camera's parameters. These orders will demonstrate some anomalies that are
observed in human psychophysics and presently lack other straightforward explanations. 'oe.

, or
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One anomaly is the induced size effect, where a distortion of one image by stretching the

Y-axis (the vertical axis) of that image produces a tilt-impression similar to that produced by '2'"

stretching the X-axis (the horizontal axis) of the other image by the same amount. Whereas

the tilt impression caused by stretching the X-axis has a simple geometrical explanation, the

reversed tilt impression caused by stretching the Y-axis has no geometrical logic behind it,

and has therefore been called an induced effect. Induced, since it is as if the unrealistically

magnified Y-axis induces the shrinking of the X- and Y-axis as a compensation, which has

the similar geometrical interpretation as stretching the X-axis of the other image. This

effect, first reported by Ogle (1938), has stimulated extensive research, see Arditi et al.

(1981), Mayhew (1982), Longuct-Higgins (1982), Mayhew & Longuet-Higgins (1982), and

Rogers & Koenderink (1986).

It will also be shown that some qualitative shape information can be obtained from

image coordinates only. More specifically, one can follow changes in the curvature of a

contour on the surface of any object in the field of view, with either x- or y-coordinate fixed.

The exact order expressions will scale in proportion to the angle of convergence between

the two cameras. The exact relative depth can be computed from these orders using few

matched points and some approximated numeric scheme, or using more than two images.

Alternatively, it can be estimated from some external estimation of the physical quantities

involved, namely the angle of convergence and the angle of gaze, in agreement with the

psychophysical theory suggested in Foley (1977).

Basic Geometry

Given two cameras, assume that the optical axes intersect at the fixation point. Also,

assume that the epipolar plane of the fixation point (the plane through the optical axes

of both cameras and their baseline, henceforth "base plane") includes the X-axes of both

cameras (which are, therefore, epipolar lines by definition). Let us define the following

coordinate system (see figure 1): let the fixation point be the origin, the base plane (which

passes through this point) be the X - Z plane, and the line perpendicular to this plane

through the origin be the Y-axis. On the X - Z plane, the optical axes of both cameras

intersect in the oiigin and create an angle 2p between them. Let the Z-axis be the angle-

bisector of 2p, and the X-axis perpendicular to the Z-axis in the X - Z plane. This system

is very similar to the cyclopean coordinate system commonly used in the literature, with

the exceptions that the angle-bisector is replaced by the median to the interocular line and

the origin is translated to the mid point of the intcrocular line. A similar system can be

defined for the case of motion, if the fixation point is kept constant. That is, the observer

follows the same point with his eyes. This is more typical of human vision than machine

vision.

For a given point P = (x, y, z), let a denote the angle of tilt - the polar angle of its

projection on the X - Z plane (a = arctan(L-)). Let i3 denote the angle of slant - the \

2
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P(x,y,z)Y z

xX

Figure 1. The base plane (X - Z) viewed from above, with two cameras.

polar angle of its projection on the Y-Z plane ($ = arctan( f)). Thus P can be also written
as P =(t~~-, ta z), where z is its depth relative to the fixation point in the above
coordinate system. Let (x1 , Yi) and (xr, yr) be the Cartesian coordinates of the projection

of P on the left and right images respectively. Using polar coordinates, the two projections -
can be written as (ri, Oi) and (rr, Or) respectively. Let A = Then the following can "

be shown to hold (see appendix):

tana (tan/i A +1 ()x

tn =cotr i9- -cot 01 (2) '
~ ~ 2 sin /t

. Thus, the two angles a and /9 depend only on the angle of convergence and the polar

3
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Qualitative Depth and Shape from Stereo Weinshall

angles of the conjugate points. It can be shown that the polar angles are preserved under .A

projection, through any point on the optical axis, onto either a spherical body (like the eye) "C'

or a planar one (a camera). There is no dependence on other parameters of the cameras

(which could be different ones), their relative positions, or the angle of gaze. Equation (1)

will be used in the next section to obtain an order on all matched image points in each

visual hemifield according to their tilt. This order is independent of the camera parameters

and demonstrates psychophysical anomalies like the induced effect and others. Equation (2)

will be used to obtain an expression for the relative depth z. However, this expression will

depend on the camera's parameters like focal length and interocular distance, and the angle

of gaze. A parameter-independent relative depth order can be obtained from this expression.

It will hold for small angles of convergence 21, as will be discussed in a succeeding section.

Tilt-related Order

From (1) it immediately follows that a is a monotonic increasing function of A for a fixed

configuration of the cameras. Thus, the ratio

Ai cotiO cot19J

A, cot 0' cot O

gives qualitative relative distance information on any two points i and j in each visual

hemifield in the following sense: if the ratio is greater than 1, meaning ai > a3 , then a •S

separating plane between points i and j through the fixation point and perpendicular to

the base plane will leave point j and the viewer on one of its sides, and point i on the other

side "further away" from the viewer. In other words, A defines an order on all the matched

points in a given hemifield. This order corresponds to Euclidean distance if points i and j
are approximately on the same line of sight from the viewer, namely about the same image

x-coordinate.

Note that if A is constant on all points segmented as belonging to the central object,

then it is a planar object with some tilt towards or away from the viewer, according to the

sign of A - 1. Moreover, since

coti > Or0

< ==cot t 1 < <

it follows that i - ,. also gives a qualitative estimation to the tilt of a point P relative

to the fixation point. If the fixation point is at the same distance from both cameras, this

estimate would indicate whether P, relative to the fixation point, is tilted away from the

camera's baseline (a > 0°), "parallel" to the baseline (a - 0"), or towards the camera's

baseline (a < 00).

The order expression A has been defined as a function of the polar angle t9 only in both

eyes. This is especially convenient since the polar angle is preserved under projection onto . 5

either a spherical body (the eye) or a planar body (a camera). However, it might prove

4
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useful to examine A as a function of the Cartesian coordinates (xl, yj) and (x,, Yr) in both
'images, assuming planar projection. In this case:

In A = In cot In x,.xl
cot 191 Y,/Yl

= (lnx, - lnxi) - (lny lny) (4)

= A(lnx) - A(ln y).

In other words, if any matching algorithm is applied to the output images of the transfor-

mation T : (x,y) --+ (lnx,lny) performed on the original images, and the disparity vector

(AX, Ay) is then computed in the usual way, then the difference Ax - Ay = In A is an order

of the same type as A, with no need for any additional computation. The transformation

T is indeed singular near the vertical and horizontal meridians. However, there is evidence
from neurophysiology for the existence of a related transformation between the retina and

V1, the complex log, which is singular at the origin (see Schwartz, 1984).

One prediction of the order A is the "induced effect", the psychophysical effect where a
distortion of one iriage by stretching the Y-axis (the vertical axis) of that image produces a

tilt impression similar to that produced by stretching the X-axis (the horizontal axis) of the .

other image by the same amount (see introduction). Evidently, the decision rule specified
above exhibits the same qualitative behavior since it involves only terms of the form IL.

Hence multiplying the Y-axis by some number has the same effect as multiplying the X-
axis by its inverse. Thus an induced effect is a natural side-effect of using the relation cot ,
which does not depend on any assumptions and approximations, or the complete recovery

of all depth-related parameters of the scene. On the other hand, some other computational

explanations to this effect, e.g. Mayhew & Longuet-Higgins (1982) and Mayhew (1982),
obtain the induced effect as a by-product of a specific approximation scheme and a tedious
numerical computation; it does not result from an exact solution of the disparity equations.
Another computational explanation (Arditi et al., 1981) suggests that a distortion occurs

in the matching stage, assuming matching is done along horizontal lines only.

Motion also shows an illusion similar to the induced effect (see Rogers & Koenderink,
1986). In this case, observers reported that a fronto-parallel surface appeared to be tilting
in depth with the right-hand side apparently closer than the left when the monocular image
was progressively magnified with head movement to the right and vice versa. A can account
for this phenomenon. Moreover, in this case there is an additional effect - a perceived
forward/backward motion. This could possibly be accounted for by the angle of gaze v. As
will be shown later,

1 +)tan v = tn (~)

1,(X=0)

Thus, a distortion of the y-axis in one image will distort v (a distortion of the x-axis will
not affect v, however). The angle of gaze v can be used to obtain the direction of motion

, in the following way (see figure 2): v is 0 (the true angle of gaze) for motion from )oint

5
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1 to point 2. Positive v, the computed angle of gaze, implies motion from 1 to 2', that is,
backward movement of the head in addition to its left to right movement. Since the head

does not move, the object is perceived as moving backwards.

A

1 2

2'

Figur, '1 False positiv- angle of gaze induces perception of backward motion (point 2'),

whereas the true value 0 shows no such motion (point 2), see text.

The quantitative aspect of this order, namely, obtaining numerical values for a and it from

A, will be discussed in a succeeding section. However, since computing A involves computing

ratios of the image's x-coordinates and y-coordinates, one should expect problems near the

meridians. The horizontal meridian is of special interest since the matching algorithm should

give relatively good results on this meridian. In this respect, it is interesting to note that

human observers also demonstrate deteriorating performance near the meridians, especially

near the horizontal meridian (Arditi, 1982). This deterioration is demonstrated by a smaller

probability for a correct detection of the tilt of an oblique line when either the x- or y-axis ,

is magnified, and when the angle between the oblique line and the horizontal meridian is

around either 0' or 900. Compensation for errors near the horizontal meridian is further

discussed in the section on error analysis.
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. I Depth-related Order

From equation (2) one can obtain an explicit expression for the depth z of a point relative_"
to the fixation point (the origin). First, note that (2) impliesY (5) i

z=(cot9'-cot9 1) 2sinp(

Thus, XY = (cot t9, - cot t91) gives exact depth order on all the points in space with some
constant height y over the base plane. It follows that this order is most useful to compare
points that differ mainly in their x-coordinate with y approximately the same. The previous
order A, on the other hand, was most useful to compare points that differ mainly in their
y-coordinate with x approximately the same. This fact stands in agreement with much
psychophysical evidence on the anisotropy between the vertical and horizontal dimensions. S

Next, let us derive an expression for z that depends only on scene and camera param-
eters. In the appendix it is shown that, for v the angle of gaze, I the interocular distance,
and h the focal length of the cameras,{ Icos(P - v) - x sinp + ZCos P.Y. (6)

or

Icos( + xsin p+ • ) (6')

Substituting (6) in (5) for a point in the right hemifield, ((6') will be used otherwise), gives:

Icos(ii - v)/sin2z
{ [2h + tanU(x + L Xl)]-cos .I1

Thus, for an angle of convergence 2pi small enough so that 2h > ftan ,(xr + -xt)l, we
obtain a relative depth order X on all the points in the visual field, where

yr-

= Xr - X1.Y1

As will be shown in the section on error analysis, y - 1 + O(p). Likewise, since the field
of view is mechanically bounded by some 2 < 1800, it follows that x < h tang. Thus, a
sufficient condition for the approp~i,.teness of X, to a first order in p, is 1 > tan/p- tan . If
2 < 900, which is a reasonable upper bound, then it is sufficient if 1 > tan p, or 2M < 900. ,
To illustrate, the distance to the point of fixation should be much greater than 3 cm for an .9.
average person looking straight ahead, possibly 30 cm or more.

We have obtained, then, a relative depth order that is the traditional x-disparity cor-
rected for non zero vergence (angle of gaze v not 0) and some field location (x-coordinate) 44

distortion. However, for a fixed convergence angle 2t, this order has some distortion relative
to the physical relative depth, which increases with the horizontal distance from the point

~ of fixation (the x-coordinate).

7
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Qualitative Shape from Stereo

The tri>,, (a, 13, z) as a point representation, and equations (1) and (2), turn out to be usefiil
foi surface normal analysis. For any two points Pl and P2 , where P1  Zl( ti T' tI -1 1)

an(1PI ( T1 ___

and /2 = Z2( tan a ta 1), let N = 1 x P 2. N is perpendicular to (P1 - P2 ). (It is
actually proportional to the normal to the plane passing through P1 , P 2 , and the fixation
point.) After some calculations, it can be shown that

cot 01 - cot 32  cot a 2 - cot a I
cota Cot 02 - cot a 2 cot/01  cot 0 1 Cot/32 - Cot a 2 cot3 1  1)

=Z( 1f (19 ,t9, d2 d) , .1g(t9 1, 1)1,, 0z2),1)
tani sin P r

where
f(1 9 ,0,02,) (cot0-cot ') - (cotd-cot

r,Ir (ot2 cot9 )+(cott-9Cott)

Ct 1 C(cot 1- cot i4)+(cot9 2 -cot)"

Thus, as long as f(197)0 , t92, 192 ) arid g( I, 91, t92, 0) remain constant, which can be deter-

mined from image coordinates only, the points are coplanar (among themselves and with
the fixation point), or the object at the center of gaze is planar. Note that A is obtained

from f when cot 9 = cot d2 = 0 (g = 0 then).

Moreover, for any object it is possible to obtain qualitative information about its surface

along any contour, with either x or y fixed. Take a contour on the surface with some fixed
y-coordinate, and let P and P2 be two points on it. Since the y-coordinate of P1 - 52 is 0,I , I

the projection of N on the X - Z plane, i z( I-,,f(191 , f, , 1 , 191) , 1), is perpendicular to

the projection of P2. - P2 Thus, for fixed y. the one dimensional boundary contour is convex
when f(I , t9I, 9, t92) increases with increasing x, concave when f(? , 11, 9, t2) decreases,
and linear when f(t9 ,'l9,d2,, 2) remains constant. Note that )Ly can be obtained from

since the sign of f determines relative depth between two points with fixed y-coordinate.

The same qualitative description can be obtained for any boundary contour with fixed .r from
following g(0 2r, 0q, ir) with increasing y, x fixed. This qualitative description depends

on image coordinates only, more specifically on polar angles of the conjugate points. Thus it'

predicts an "induced effect" for planes that do not include the point of fixation. Obtaining
this description is not trivial, though, since such a contour in the world coordinate system
will be usually mapped to an oblique line in the image plane due to convergence.

In the general case, the normal to a plane passing through three points in space P. P2 .

ant P3 depends on the image coordinates and the angle of convergence p in a more complex
way, so that y should be known to compute the (exact) 3-D normal. (The focal length 1i
should be.jnown as wcll.) However, if P1 - P 2 = (0, y, z) and P 2 - P3 = (x, 0, z) or vice

versa, the normal can be computed from the above argument (up to a scaling factor of the . ,

x- and y-coordinates, depending ol p). N"NO

8
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Qualitative Depth and Shape from Stereo 'Neixishall p

Alternatively, one can estimate the normal to the plane passing between three points

P, P2, and P 3 to a first order in p and the x-disparity

Xr Y' X e

2h sinji

In this case, after substituting KMh - (xr - -"-xi) as an approximation for z, where ,p,,, is
some constant that depends on p, v, and h, one gets an expression for the general normal

VG:

NG=(P- P 2 ) X (P 2 - ) -

eI;xh 1 1 1 I2, 2,y, 2, 3 G(3, 3, 3,,
U,,., xx 1,X1, Y Y , X,. 'Yr, Y, Xr, 3, Y1),

where W,,,h, VA, and U,, h are some constants which depend on It, v and h. F() and S
Go are some functions of images coordinates only. Once again, c,ne can verify planarity of
surfaces of objects in the field of view when F and G remain constant.

Numerical Computation

Let us compute the exact tilt and depth value to a first order in the convergence angle 2,,
following Mayhew & Longuet-Higgins' (1982) method to compute tilt and slant of a plane

. * through the fixation point. The following scheme, however, will be simpler and involve less
and more rigorous assumptions (we shall only assume small 2p as implied above). Since, to

I cos(V)a first order in it, tan2s : oR , where R is the distance between the fixation point and
the midpoint of the interocular line (the nose), our computations will be to a first order in

Let (x,y) and (x',y') denote the image coordinates of a certain point in space on
the two cameras, respectively. Let & and /3 denote the parameters of a plane that passes
through a given point in space and the fixation point in the above coordinate system, so
that Z - &X + fY. Thus & is tan(a) in the previous notations if = 0 and is tan(i3) if
&=0.

Then, to a first order in /t, we have (Longuet-Higgins & Prazdny, 1980)

Ax = x'- x (&cos(u) + sin(v))x + ) cos(v)y

+ (cos(V) - & sin(v))Xr - 3 sin(v)xy] • I/R,

Ay = yI - y =[sin()y + (cos(u) - &sin(V))3ry (7)

- )3sin(V)y2 ] • I/R.

(The coordinate system used to obtain (7) is the cyclopean coordinate system. This, how-
ever, does not change the results when changing to our coordinate system since the angle-
bisector and the median are the same line to a first order in it and the translation of the

origin has been taken into account in the definition of the target plane.)

9 ,5



Qualitative Depth and Shape from Stereo Weinshall

For a given point in space, one can, in the more interesting cases, take the plane passing -
through it and the fixation point which is perpendicular to the base plane, for which d = 0.
This plane would be determined only by & (the plane perpendicular to the base plane, which
is usually unique). Thus, we have

_y= [sin(v) + (cos(v) - &sin(v))x] • I/RY )

= [tan(v) + (1 - &tan(v))xj] tan(2p).

Let ( x, , yl , Axl , Ay 1 ) be the coordinates of a point on the vertical meridian, so that
x, ; 0. Then we have

Y-- = tan(v), tan(2/i).
Y1

(Recall that -- = tan(v) - tan(/u) always.)
1+ 1

SI

Let ( x 2 , Y2 , Ax 2 , AY2 ) be the coordinates of a point with & ; 0. Such a point, if it.

exists, can be easily identified since it satisfies L , 1--. Then we have:

A12 _ Ay Y2 Y 1 y
X2 tan(2y) -- tan(v) tan(2pt) 'A 2 y' = Y "

Y2 Y2 Y1 Y2 Y1

In other words,
tan(2p)=xl[y YY .

X2  Y2 1

Now, for any point (x, y) in the image we have, using (7) with = 0: ,

X1 y' I Ax Ay
• ' ' - _ & Icos(v)/ = &. tan(2p).

This leads to the final equations:

tan(2p) = 1 [L2 - I. (9)
X2  Y2 Y1

and:

X " tan(v)- - R=
tan(2 ) ' tan(2ii) - tan2(2 ) + Y

The ratio L near the vertical meridian is relatively reliable and easy to obtain. However,
a point with 4 , 0 does not necessarily exist, in which case we can:

1. Follow Mayhew & Longuet-Higgins (1982) and neglect the term &tan(v), but not the
term tan(v'),

tan(2p) -_1 - y] (9')
X y Yi

If we neglect tan(v), for consistency, we obtain:

1 AY
tan(2p) = 1 Ay' (9) .x y

10
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2. Solve the initial scheme without such a point. Given a vertical-meridian point, there
remains a fairly simple equation to solve. This would be:

tan(2 1 )-(_-
Y1 X y Y1 (10)

tan(2p) . & = - - _

X y
which reduces, after substituting tan(21i) from the second equation in the first equation,
to a second degree polynomial in &.

A different numerical approach would be to use, for example, three images taken while
moving on the base plane. Denote by (x0 , y0 ), (xi, yi) and (x 2, Y2 ) the coordinates of the
conjugate projections of some point P on the three images. Denote by al, ft, and vi
the angle of tilt, half the angle of convergence, and the angle of gaze, respectively, in the
coordinate system defined as above by the first two images. Denote by a 2 , P2 and v2 the
same angles in the coordinate system defined by the last two images (see figure 3). For

motion on a straight line we have:

A(xo,Yo,xl,Y 1) -1tana1 •tanph = )(xo,Yo,x,y) + 1

1 Y1 ,=0)

tan v, tan , =- = 1 T___ 0
1+

()x1 ,yi,x 2 ,y 2 ) - 1
~~tana( 2 •tan/I 2 =.,2 )A(xl,Yl,x 2 ,Y 2 ) ± 1

tan v 2 • tan A 2 = Y1X2,Y2

a1  a2 = 11 + /2X

V2 - V1 = P11 + P2,

where Y is the Y-axis ratio on the vertical meridian (x = 0) between conjugate points
in images i and j.

Thus we have six nonlinear equations with six unknowns. For small pi's we have

approximately a linear problem, where the solution is a null vector of the approximating

matrix. We will obtain a similar set of equations if we take two points in the three images

and ignore the equations involving the angle of gaze v. In this case the motion in the base
plane does not have to be in a straight line.

Error Analysis

. First, from the definition of A and X it follows that the base plane itself is singular in

11
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P

Y x
22

a x1

ril

Vi
I.,

•,

0 '2
-ZI -Z2

Figure 3. Three images from motion on the base plane.

the sense that these orders are not defined for points on it. The same problem exists in
the analysis of normals to surfaces of objects. One can, however, estimate the orders and S
normals by substituting L- of a matched point far from the base plane. More specifically,
for P = (x, y, z) we have

Yr d, z 2sinptanv ±x 2 sin/ p( -+ ~ +o(-

yi dr d 1 + tan ptan , d 1 + tan t tan o dr dr
2tanptanv +z 2siniytanv x 2sin/i +(-- z).

1 + tanptanv d 1 + tan p tanv d, 1 + tan ptanv dr dr

Thus, if point Pi is used to approximate po.nt Pt , the error will be:
I. r2 sin zJA zj x1. - x3

(\ Y I( ) + tan tanv dr tn ' + d

The error is 0 if the approximating point P) lies exactly "above" P (differs only in the

12
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y-coordinate).

Moreover, one can use as an estimation I-tan A tan v (the first two terms), so that some
(possibly extraretinal) estimation of i (half the angle of convergence) and V (the angle of
gaze) will suffice to give a rough estimation to L when no other source of information is
available. Note that one can not take - 1 when computing x, - V-xi, as a first order
approximation in M, since x, - x1 is of the order of magnitude of [t also.

Second, let us consider the violation of the basic assumption, namely, that the X-axes
themselves of both cameras are epipolar lines. This introduces an error 6, and S1 in the
polar angle of a given point's projections on the right and left images, respectively. Thus,
the true orders should be:

cot( 9, + ,)
cot(t*9 +65) ;-
cot 19, cot V, tan t9t  + Ob)
Cot 19, +  C _ - • , ( )ct cos2 tg sin2 t9,-

X = cot(. + b,) - cot(19i + 61)
1 1 I

= (cotti -cot tl)- sin2  6+ i2 6+0(6),

where b,, 61 < b. The main conclusion from this is that the effect of axes misalignment
is greater near the horizontal and vertical meridians, and possibly negligible further away.
Also, this error affects less the expressions for qualitative shape (the normal to iso-x or iso-y
surface contours), since they involve differences where this error is somewhat cancelled out

for the two points.

Discussion: Comparison to some empirical data

The orders A and X as defined above, and the way the scaling coefficients depend on camera
parameters, seem to be consistent with the following psychophysical results:

1. The advantage of relative depth perception in human vision, which is more reliable than
absolute depth perception. That is, it is easier to distinguish between different objects
if they differ a little in depth than to give a good estimation to the absolute depth of a
given object in space with no additional information of perspective.

2. The induced effect, as discussed above, which can be shown to be a natural side effect
of using the tilt-related order A to estimate the tilt of a plane at the center of gaze. No
assumptions on the way the visual system finds and interprets corresponding points is

needed. Moreover, this is a "local" explanation of the induced effect in the sense that
it allows for opposite induced effects in neighboring spatial regions, in agreement with
psychophysical evidence (see Rogers & Koenderink, 1986). Likewise, this explanation
does not imply a perceived asymmetric convergence of the eyes, again in agreement S

~ with empirical data.. It is interesting to note that A might be the discrete equivalent to

13
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the term of the optical flow field used by Rogers & Koenderink (1986) to explain tile,

induced effect with motion parallax. Quantitatively, A is more susceptible to errors near
the meridians, in agreement with psychophysical experiments (Arditi, 1982) that show
deterioration in human performance of tilt estimation near the meridians. Finally, such
an effect for a plane not passing through the fixation point is predicted by our qualitative
shape analysis.

3. The difficulty in comparing right-hemifield and left-hemifield points for their depth, as
demonstrated by the following experiment (Rogers & Graham, 1983): given two planes,
one tilted away from the viewer from the center to the right and one tilted towards the
viewer from the center to the left, whose end points on the left and right sides respectively

are equidistant, the observer will (wrongly) perceive the right zidc ,f the first plane as
closer in depth than the left side of the second plane. If, however, the whole configuration
is rotated by 900 so that one plane is tilted upwards from the center and the other is
tilted downwards from the center, with far from the center end sides equidistant, then
the observer will actually (rightly) perceive those two ends as equidistant. This result is
consistent with the above order A, which orders points on the right and left hemifields
separately, on either side of the horizontal meridian, but not if they are on different sides
of the vertical meridian. X is also defined differently in the two visual hemifields, and it
has some distortion as a function of the horizontal distance between the two points.

4. Empirical evidence for the dependence of relative depth perception on extraretinal per-
ception of the angle of convergence of the eyes, which is predicted by using the orders A
and X to evaluate depth with no additional computation.

5. The anisotropy between the horizontal and vertical dimensions in relative depth per-
ception, as demonstrated, e.g., by the advantage of using flanking lines as test objects
versus vertically displaced lines (Westheimer, 1979). Moreover, both vertically displaced
or horizontally displaced stimuli are preferred over diagonally displaced stimuli in the
sense of lower disparity threshold for discrimination. This is consistent with two distinct
qualitative orders that prefer horizontal or vertical displacement.

6. Psychophysical results suggesting either deterioration in depth distinction when points
are coplanar with the point of fixation or depth perception relative to a plane through the
fixation point, which is context dependent and not necessarily the fronto-parallel plane
(see Mitchison & Westheimer, 1984). Note that A is constant for points coplanar with
the fixation point.

7. The use of A for threshold estimation in acuity experiments predicts some results like
an increase of threshold with standing disparity (Westheimer, 1979) or the cosine rule
(Ebenholz & Walchli, 1965).

Moreover, A and Xj' depend only on the polar angles of the conjugate points in both
images, a quantity that is preserved under projection to a spherical body (an eye) or a
planar body (a camera). It is interesting to note, in this respect, that the first visual
transformation from the retina to VI in primates seems to be in good agreement with -\N,
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the complex-log mapping (Schwartz, 1984), namely: (x, y) - (logr, V). This mapping
explicitly computes the polar angle V of a point.

Summary

The goal of this work had been to obtain qualitative information from a stereo pair, with as
few computations as possible and minimal dependence on the camera and scene parameters.
We have shown that points in a stereo pair, once matched to each other, can be ordered
according to two distinct order expressions: a tilt-related order A, which is roughly a relative
depth order when ordering points with only vertical displacement, and a depth-related
order X which is best to order points with only horizontal displacement. These orders 0
are completely determined by image coordinates of conjugate points, and no camera or
scene parameters are needed (which need not be similar for both cameras). A and some
variation of X (XY) depend only on the polar angles of the conjugate points in both images,
a quantity which is preserved under projection to a spherical body (an eye) or a planar body
(a camera). Moreover, given the polar angles of the images coordinates, some qualitative
shape information can be obtained: one can follow changes in the curvature of a contour
on the surface of any object in the field of view, with either x- or y-coordinate fixed. We
demonstrated, by further analyzing the exact equations, that obt.ining the quantitative
information is much harder and less reliable than obtaining the qualitative one, e.g., orders
like A and X. It usually involves some assumptions on the scene or extra-retinal information,
plus a lot of computations. These computations tend to be less robust and sensitive to
noise and errors. Finally, we discussed some psychophysical (and neurophysiological) data
which seem to support the use of such orders in humans. Most notably, the use of A for
tilt estimation predicts "the induced size effect", an unusual behavior of the human visual
system which lacks other straightforward explanation.

Appendix

Consider the base plane, which includes the X-axes of both cameras and both their optical-
axes. This is illustrated in figure 4, where 0 is the focal node of one camera, A is the
fixation point, A' is the projection of A on the image plane or the origin of the camera
coordinate system, B is the projection of a given point in space (C) on the base plane, B' 40

is the projection of B on the camera X-axis, and C' is the projection of the point C on
the image plane. In the base plane, we add the point D which is the projection of B on
the optical axis AA. Let Wo denote the angle BAO. Let (x, y) denote the coordinates of
the projection of point C on the image, so that x = A'B and y = B'C'. Let d denote the 0

~ distance of the fixation point to the eye, so that d = AO, and let h denote the focal length
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of the camera, so that h - AT. Using similar triangles, one can verify the following:

BU _ fU ffU d -Tffcos W

C

DABsidA: B
Aos

A /

I

0

h

A'

Figure 4. The base plane viewed from above, with one camera.

In other words,

ABsin V D d - AB---cos p

x A7U h
In other words,

hAB sin W
3= d- -co "

Thus xAB
- = B:F sinW .

Note that our assumption that the base plane intersects both cameras' X-axes implies that
the same geometry holds for both cameras in the sense that the segments BU and AB are

identical in both cases. (A and C are the same points, and B is identical since C is projected

16
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onto the same plane.) Let us add indices for the variables of the left and right cameras, I
~ and r respectively. Then

Xr AB= --- • sin (Pr

Yr BC (12)

z- =A. sinol.
Y1 BC

Finally
X/ X S l. (13)

Yr Y1 sin 'P

Bp

-V Z R

L

Figure 5. Angles of tilt on the base plane as viewed from above.

Figure 5 illustrates the geometry on the base plane with both cameras, and the coordinate
system used in the text. Recall that 2M denotes the angle of convergence of the cameras in
the base plane, and that the Z-axis is defined as the angle-bisector of this angle. Also, a
was defined as arctan(z), so that a = 900. These definitions of p and a imply the2 "

following:

' = a + 90'~ S

=P, =a+90+ +t.
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Thus :
sin W, cos a cos p + sin a sin p 1 + tan a tan f

sin W, cos a cosp - sina sinp 1 - tan tan (

We havc defined A = joLt, -/. -" From (13) and (14) we obtain

Al+tanatan# A-i-

1- tanatanA = tanatan l '

which is equivalent to equation (1).

Now, if C = (x, y, z) in the world coordinate system we have defined above, then

Xr xi AB
cott 9 - -- -- , - sin-- )

Yr Y1 BC -i

- 2 sin a sin pBC
z

2sin#-.
Y

Since by definition tan # = ., we immediately obtain equation (2).

Let us develop the expression for the image coordinate y above, considering the right
image with no loss of generality. We then have from (11),

hBC
Yr dr - AB cos ,r

hy .- p,
d, - x sin/I + z cos p

From figure 1, in which the angle of gaze v is defined, it follows that dr -c iost,-') s that
sin 211y=( cos(P - V)

sin2# - xsint + zcosp)• Yr (6)

sin 2M h
Applying the same argument to the y coordinate of the left image, we obtain

I cos(P + V)+Xsin+ZCosuP) L (6')
sin 2p h
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